DAX Physics 101: Demystifying DAX Evaluation Context

Featuring:
Mr. Brian Grant
Sr. Analytics Consultant
skypoint.ai

S skypoint

A Little Background

People have been asking me to write a book for forever.

I decided to create a blog to act as a first draft.

This let me get ideas out on paper (sort of) while working out specifics about where/how certain ideas get introduced.

This presentation summarizes a big, big chunk of the content of my blog / proto-book.

Evaluation Context

Evaluation Context is terrifying.

Q Evaluation contelto

Not so much the concept, mind you, mainly the name.

Don't get me wrong, it is tricky, but mere mortals (like you and me) can absolutely understand it. If you can understand a list of groceries, you can understand Evaluation Context.

Evaluation Context

This is a core concept of DAX, and if we can do the work to understand it, we will start to see DAX not as a giant angry, spiteful god, prone to whims of fury; but instead see it as a simple machine that moves tables around for us.

Evaluation Context

There's a small problem though...

Before we can understand Evaluation Context, we have to understand a couple other related concepts first.

What We'll Learn Today

Total Transactions = COUNTROWS (Sale)

```
SUMX(
```

SUMX(
Sale,
Sale,
Sale[Qty] * Sale[Price]
Sale[Qty] * Sale[Price]
)

```
)
```

To start we'll talk about Table References and how, in general, when you type in the name of a table what you get is probably different than you expect.

Next, we'll review the concept of Sub-Formulas ("sub-expressions") and how what often looks like one big formula is actually several smaller formulas chained together.

With all that done we'll be able to get a solid understanding of Evaluation Context and how it gets used by DAX sub-formulas to produce the answers we see in our Power BI reports.

Where Are We On Mount DAX?

Practical DAX

How to solve very simple, common, everyday problems.

Great when it works Avoids introducing hard ideas

名

Understanding Table References

(Setting Things Up Part 1)

Sale
"All the sales transactions"

Dish
"All the dishes on the menu"

A very simple Data Model with two tables and a relationship between them.

The Four Tables of DAX（and Power BI）

Model Table
＂Physical Table of the Data Model＂

Temp Table
＂Table Value＂

Sale［Shift］	Sale［Qty］	Sale［Price］	Sale［Dish］	Dish［ID］	Dish［Type］
Lunch	1	$\$ 8$	Burger	Burger	H．Special
Lunch	3	$\$ 8$	$\$ 5$		

impossible to see directly （CONCATONATEX，TOCSV）

Temporary（logical）copies used in the process of summarizing data

Summary Table

＂Result of a DAX Query＂

Results	
Shift Total Qty Lunch 4 \mathbf{x} Dinner 2	
Output	Results
	Query History

Fairly easy to see

 （DAX Studio／Query Panel）Summarization of the data in the Data Model

Table Visual
＂Table Visual＂

［10 囲	Sales Summary	
	Shift To	Quantity
	Lunch	4
的昌	Dinner	2
	Shift Lunch Dinner	Type H．Special Regular

Very easy to see
（Power BI Page）

Rendering of Summary Table with fonts，titles，etc．

Just a few DAX functions work with these．

Who's Counting Anyways?

This Right?

Nope, This:

Total Transactions $=$ COUNTROWS (Sale)

Shift	\checkmark	Qty	\checkmark	Price	\checkmark	Dish	\checkmark
Lunch			2		\$10	Pasta	
Lunch			1		\$8	Burger	
Lunch			1		\$10	Pasta	
Lunch			3		\$8	Burger	
Dinner			2		\$8	Burger	
Dinner			1		\$12	Salad	
Dinner			2		\$10	Pasta	

The table called "Sale" in your Date Model

$$
7 \text { Rows / } 4 \text { Col }
$$

Sale[Shift] Sale[Qty] Sale[Price]	Sale[Dish]	Dish[ID]	Dish[Type]	Dish[Cost]
Lunch	1	$\$ 8$	Burger	Burger
H. Special	$\$ 5$			
Lunch	3	$\$ 8$	Burger	Burger

> A (logical) copy of that table with columns added \& filters applied $\quad 2$ Rows $/ 7 \mathrm{Col}$

What are you counting the rows of?

By default, table references in DAX give you a filtered copy of that table.

Filtered (Logical) Copy

> Total Transactions = COUNTROWS(Sale)

Picture Perfect

This is less weird than it sounds.

In fact, it is very Excel like...

Back to Excel

Let's start with a very
simple cell.

Cell References Automatically Give You Values

The cell A1 has lots of things in it...

... but reference A1 in a formula and Excel will assume you want the cell's value.
99% of the time this is what you want.

Only specialty functions (ROW, COLUMN, FORMULATEXT) will use the reference to grab the other things.

Back to DAX

Sale
 Shift Qty \square Price \square Dish Lunch 2 $\$ 10$ Pasta Lunch 1 $\$ 8$ Burger Lunch 1 $\$ 10$ Pasta Lunch 3 $\$ 8$ Burger Dinner 2 $\$ 8$ Burger Dinner 1 $\$ 12$ Salad Dinner 2 $\$ 10$ Pasta

Let's start with a very simple

Data Model table.

Table References Automatically Give You Filtered Copies

The Model Table "Sale" has lots of things in it...

Sale[Shift] Sale[Qty] Sale[Price] Sale[Dish] Dish[ID] Dish[Type] Dish[Cost] | Lunch | 1 | $\$ 8$ | Burger | Burger | H. Special |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Lunch | 3 | $\$ 8$ | Burger | Burger | H. Special |

... but reference "Sale" in a formula and DAX will assume you want a filtered copy.
99% of the time this is what you want.

Only specialty functions (REMOVEFILTERS, ALL, ISFILTERED) will use the reference to grab the other things.

Getting the Filtered Copy

> Total Transactions = COUNTROWS(Sale)

But how does DAX get you that "Filtered Copy"?

It preforms 3 simple steps...

Getting the Filtered Copy

Shift \square Lunch
 Dinner
 Regular

(Slicers put filters in the Filter Context)

(List of current filters)

Sale[Shift]	Sale[Qty]	Sale[Price]	Sale[Dish]
Hunch	2	\$10	Pasta
Kunch	1	$\$ 8$	Burger
Kunch	1	\$10	Pasta
Kunch	3	\$8	Burger
Dinner	2	\$8	Burger
Dinner	1	$\$ 12$	salad
Dinner	2	818	Pasta

Sale[Shift] Sale[Qty] Sale[Price] Sale[Dish] Dish[ID] Dish[Type] Dish[Cost]
iLunch 2 \$10 Pasta Pasta Regular $\$ 4$
Kunch

Kunch 3 . $\$ 8$ Burger Burgen .H. Special $\$ 5$

Dinner	2	$\$ 8$	Burger	Burger
Dinner	1	$\$ 12$	Halad	Special
Salad	Regular	$\$ 5$		

Dinner -

Sale[Shift]	ale[Qty]	Sale[Price]	Sale[Dish]	Dish[ID]	Dish[Type]	ish[Cost]
Lunch	2	\$10	Pasta	Pasta		\$4
Lunch	1	\$8	Burger	Burger	H. Special	\$5
Hunch	1	\$10	Pasta	Pasta		\$4
Lunch	3	88	Burger	Burger	H. Special	85
	2	88	Burger	Burger	H. Special	85
	1	\$12	Salad	Salad		86
	2	\$10	Pasta	Pasta		\$4

[^0]
The Simple Copy

Make a copy as a Temp Table.

(Like SELECT * FROM Sale)

The Super Lookup

Use Relationships to lookup columns. AKA "Table Expansion"
(LikeLEFT JOIN Dish ON Relationship)

Auto Filtering

Apply all filters in the Filter Context.
(Like WHERE EXISTS filters aka Semi Join)

Getting the Filtered Copy

Filter Context

The name sounds intimidating, but it's nothing more than:
"The list of filters to apply during Auto-Filtering"

Sale[Shift]	ale[Qty]	Sale[Price]	Sale[Dish]	Dish[ID]	Dish[Type]	i ish[Cost]	Auto Filtering
Lunch	2	\$10	Pasta	Pasta		\$4	Apply all filters in the Filter Context.
Lunch	1	\$8	Burger	Burger	H. Special	85	
Lunch	1	$\$ 10$	Pasta	Pasta		\$4	(Like WHERE EXISTS filters aka Semi Join)
Lunch	3	88	Burger	Burger	H. Special	\$5	
	2	\$8	Burger	Burger	H. Special	85	
	1	$\$ 12$	Salad	Salad		\$6	
	2	\$18	Pasta	Pasta		\$4	

(List of current filters)

In DAX, filters are tables.
For humans, this is weird.
For a database, this makes total sense
(and is very fast)

Getting the Filtered Copy

(Slicers put filters in the Filter Context)

(List of current filters)

Sale[Shift]	Sale[Qty]	Sale[Price]	Sale[Dish]
Hunch	2	\$10	Pasta
Kunch	1	$\$ 8$	Burger
Kunch	1	\$10	Pasta
Kunch	3	\$8	Burger
Dinner	2	\$8	Burger
Dinner	1	$\$ 12$	salad
Dinner	2	818	Pasta

Sale[Shift] Sale[Qty] Sale[Price] Sale[Dish] Dish[ID] Dish[Type] Dish[Cost]

Hunch

Dinner

Sale[Shift]	ale[Qty]	Sale[Price]	Sale[Dish]	Dish[ID]	Dish[Type]	ish[Cost]
Lunch	2	\$10	Pasta	Pasta		\$4
Lunch	1	\$8	Burger	Burger	H. Special	85
Lunch	1	\$10	Pasta	Pasta		\$4
Lunch	3	$\$ 8$	Burger	Burger	H. Special	85
	2	88	Burger	Burger	H. Special	85
	1	812	Salad	Salad		\$6
---2	2	\$10	Pasta	Pasta		\$4

[^1]
The Simple Copy

Make a copy as a Temp Table.

(LikeSELECT* FROMSale)

The Super Lookup

Use Relationships to lookup columns. AKA "Table Expansion"
(LikeLEFT JOIN Dish ON Relationship)

Auto Filtering

Apply all filters in the Filter Context.
(Like WHERE EXISTS filters aka Semi Join)

Most table references in DAX create a filtered copy of that table.

The Sub-Formulas of DAX (Setting Things Up Part 2)

DAX Is A Language of Sub-Formulas

Most DAX formulas actually contain one or more Sub-Formulas in them.

These are just a small formulas inside the larger formula.

DAX Is A Language of Sub-Formulas

There are just two kinds of sub-formulas we care about:

Per Row Formula

"A sub-formula that runs once per row of a Temp Table."

New Filters Formula

"A sub-formula that runs with a new set of filters."

The Per Row Formula of Iterators

Argument 1:
Instructions for creating a Temp Table

Argument 2:

Formula to run for each row of that Temp Table ("Per Row Formula")

The New Filters Formula of CALCULATE

```
CALCULATE(
    COUNTROWS( Sale ),
    REMOVEFILTERS( Sale[Shift] )
"Please remove any filters on Sale[Shift]."
)
```

```
CALCULATE(
    SUM( Sale[Qty] ),
    TREATAS( { "Pasta" }, Sale[Dish]
```


"Please add this as a filter."

```
CALCULATE(
    DISTINCTCOUNT( Sale[Dish] ),
    TREATAS( { "Lunch" }, Sale[Shift] )
```



```
    Nunch
)
```

Argument 1:
Formula to run with a new set of filters
("New Filters Formula")

Argument 2:

How you want the filters to be different (What filters do you want to remove or add?)

The Two Kinds of DAX Sub-Formulas

Per Row Formula

(Argument 2 of Iterators)
"A sub-formula that runs once per row of a Temp Table."

```
SUMX(
    Sale,
    Sale[Qty] * Sale[Price]
)
```

```
AVERAGEX(
    ALL( Dish ),
    IF( Dish[Cost] >= 5, 1, 0)
)
```

```
MAXX(
    { 99.6, 100.4, 200.1 },
    ROUND( [Value], 0 )
)
```

```
CALCULATE(
    COUNTROWS( Sale ),
    REMOVEFILTERS( Sale[Shift] )
)
```

```
CALCULATE(
    SUM( Sale[Qty] ),
    TREATAS( { "Pasta" }, Sale[Dish] )
)
```

```
CALCULATE(
    DISTINCTCOUNT( Sale[Dish] ),
    TREATAS( { "Lunch" }, Sale[Shift] )
)
```


What's With the Non-Technical Names?

What do I tell students they're writing?

```
SUMX(
    Sale,
    ???
)
```

Understandable:
"A Per Row Formula"

Accurate:
"A Multi-Row Contextualized
Scalar Value Sub-Expression"

```
CALCULATE(
```

CALCULATE(
???,
???,
REMOVEFILTERS(Sale[Dish])
REMOVEFILTERS(Sale[Dish])
)

```
)
```

Understandable:
"A New Filters Formula"
"A Filter Contextualized Scalar
Value Sub-Expression"

Formula Decomposition

To help help us understand the sub-formulas, we can visually out into their own little boxes.

This Decomposition process, makes the sub-formulas bite-sized and easier to understand.

Formula Decomposition

This is especially helpful when dealing with a longer chain of sub-formulas:

Each piece is bite-sized and easier to read. There's another reason this is useful though...

Take Aways: Sub-Formulas

The Per Row Formula is a sub-formula that runs for each row of a Temp Table. (Argument 2 of Iterators)

The New Filters Formula is a sub-formula that runs with some changes made to the filters. (Argument 1 of CALCULATE)

Decomposition is visually pulling the sub-formulas out into their own boxes to better understand the chain of formulas.

SUMX (
Sale,
Sale[Qty] * Sale[Price]
)

CALCULATE
COUNTROWS(Sale), REMOVEFILTERS(Sale[Shift]))

Main Formula

Evaluation Context

 (Finally)
DAX Formulas and Sub-Formulas

Each time a sub-formula (or formula) runs, it does so with at least one pair of lists in place.

These lists hold important information that the sub-formulas might need.

Each pair of lists is given to the sub-formula by its parent function.

DAX Formulas and Sub-Formulas

The parent function "hands down" important information to the sub-formula through these lists.

DAX Formulas and Sub-Formulas

The parent function "hands down" important information to the sub-formula through these lists.

DAX Formulas and Sub-Formulas

The parent function "hands down" important information to the sub-formula through these lists.

DAX Formulas and Sub-Formulas

Each time a sub-formula (or formula) runs, it does so with at least one pair of lists in place.

These pairs of lists hold important information that the sub-formulas might need.

Each Evaluation Context of lists is given to the sub-formula by its parent function.

DAX Evaluation Context

Evaluation Context

A pair of lists where important information is stored for a sub-formula to use.

(When I say "list" I don't mean the computer science kind, I mean the kind that's on your fridge.)

How Does "Row Context" Get Used?

Row Context:

```
```

Sale[Shift] = "Lunch"

```
```

Sale[Shift] = "Lunch"
Sale[Qty] = 1
Sale[Qty] = 1
Sale[Price] = \$8
Sale[Price] = \$8
Sale[Dish] = "Burger"
Sale[Dish] = "Burger"
Dish[ID] = "Burger" (R)
Dish[ID] = "Burger" (R)
Dish[Type] = "H. Special" (R)
Dish[Type] = "H. Special" (R)
Dish[Cost] = \$5 (R)

```
```

Dish[Cost] = \$5 (R)

```
```

Filter Context:

```
Sale[Shift]
ILunch
Dish[Type]
H. Special
```

Sub-Formula

```
Sale[Qty] * Sale[Price]
```

```
1 * $8 > $8
```

The sub-formula can grab values from the Row Context and use them like a numbers/text/etc.

How Does "Row Context" Get Used?

Row Context:

```
Sale[Shift] = "Lunch"
Sale[Qty] = 1
Sale[Price] = $8
Sale[Dish] = "Burger"
Dish[ID] = "Burger"
Dish[Type] = "H. Special" (R)
Dish[Cost] = $5 (R)
```

Filter Context:

```
Sale[Shift]
Itunch
Dish[Type]
H. Special
```

Sub-Formula

```
Sale[Qty] * RELATED( Dish[Cost] )
```

```
1 * $5 > $5
```

The sub-formula can grab values from the Row Context and use them like a numbers/text/etc.

How Does "Row Context" Get Used?

Row Context:

```
Sale[Shift] = "Lunch"
Sale[Qty] = 1
Sale[Price] = $8
Sale[Dish] = "Burger"
Dish[ID] = "Burger"
Dish[ID] = "Burger" (R)
Dish[Cost] = $5 (R)
```

Filter Context:

```
Sale[Shift]
Itunch
ILunch
Dish[Type]
H. Special
```

Sub-Formula

```
UPPER( Sale[Dish] )
```

```
UPPER( "Burger" ) }->\mathrm{ "BURGER"
```

Generally, you add or multiply the row's numbers, but you can do most Excel things here.

How Does "Filter Context" Get Used?

```
Mow Context:
```

Filter Context:

```
Sale[Shift]
ILunch
ILunch
[Dish[Type]
HH,Special]
```

Sub-Formula

```
COUNTROWS( Sale )
```

```
Sale[Shift] Sale[Qty] Sale[Price] Sale[Dish] Dish[ID] Dish[Type] Dish[Cost]
Lunch
```


The Sub-Formula might include a table reference or function that performs Auto-Filtering.

Evaluation Context: A Simple Pair of Lists

Row Context:

```
Sale[Shift] = "Lunch"
Sale[Qty] = 1
Sale[Price] = $8
Sale[Dish] = "Burger"
Dish[ID] = "Burger"
Dish[Type] = "H. Special" (R)
Dish[Cost] = $5 (R)
```

"Numbers and Text for Excel style use"

Filter Context:

```
Sale[Shift]
ILunch
Dish[Type]
H. Special
```

"Filters for Auto-Filtering"

Evaluation Context: A Simple Pair of Lists

OK, fine. But how does stuff get put into the lists?

Lemme show you...

How CALCULATE Changes Filter Context

CALCULATE makes a copy of the Evaluation Context it was called in.
It makes whatever change was requested in argument 2 of CALCULATE.
Then it hands the new Evaluation Context to the sub-formula to run in.

How CALCULATE Changes Filter Context

Let's make this more concrete.
Lunch

```
1 Total Transactions All Shifts =
2 CALCULATE(
3 COUNTROWS( Sale ),
4
```


How CALCULATE Changes Filter Context

How CALCULATE Changes Filter Context

Total Transactions All Shifts

Sale[Shift]	Sale[Qty]	Sale[Price]	Sale[Dish]	Dish[ID]	Dish[Type]	Dish[Cost]
Lunch	1	\$8	Burger	Burger	H. Special	\$5
Lunch	3	\$8	Burger	Burger	H. Special	\$5
Dinner	2	\$8	Burger	Burger	H. Special	85

Evaluation Context for Measure

Evaluation Context for New Filters Formula

(Enpty) Row Context:	Filter Context:
	[Sale[Shift] $]$ Lunch [Dish[Type] $\left[\begin{array}{l}\text { H- Special }\end{array}\right]$
	1

How About Adding A Filter?

Yeah, how about adding filters? How do you do that?

Lemme show you...


```
Total Dinner Transactions =
calculate(
    COUNTROWS( Sale ),
    TREATAS( {"Dinner"}, Sale[Shift])
```

5)

A Brief Aside

We can use curly braces to quickly make a Temp Table...

...then use TREATAS to "rename" its column so it will filter the column we want.

How CALCULATE Changes Filter Context

Total Dinner Transactions
CALCULATE (
COUNTROWS (Sale),
TREATAS(\{"Dinner"\}, Sale[Shift])

How CALCULATE Changes Filter Context

Iterators

Now let's look at Iterators...

How Iterators Set Row Context

SUMX makes several copies of the Evaluation Context it was called in.
Each row's values get written into one of the Row Contexts.
Then it hands the set of new Evaluation Contexts to the sub-formula to run in.

How SUMX Changes Row Context

Let's make this more concrete.

How SUMX Changes Row Context

```
Total Sales
SUMX(
    Sale,
    Sale[Qty] * Sale[Price]
```

)

How SUMX Changes Row Context

How SUMX Changes Row Context

How SUMX Changes Row Context

How SUMX Changes Row Context

Evaluation Context for Per Row Formula (Row 1)

Row Context:		Filter Context:
Sale[Shift]	$=$ "Lunch"	
Sale[Qty]	$=1$	
Sale[Price]	$=\$ 8$	Sale[Shift]
Sale[Dish]	$=$ "Burger"	
Dish[ID]	$=$ "Burger"	(R)
Dish[Type]	$=$ "H. Special"	(R)
Dish[Cost]	$=\$ 5$	(R)

Evaluation Context for Per Row Formula (Row 2)

Row Context:		Filter Context:
Sale[Shift]	$=$ "Lunch"	
Sale[Qty]	$=3$	
Sale[Price	$=\$ 8$	Sale[Shift]
Sale[Dish]	$=$ "Burger"	
Dish[ID]	$=$ "Burger"	(R)
Dish[Type]	$=$ "H. Special"	(R)
Dish[Cost]	$=\$ 5$	(R)

How SUMX Changes Row Context (Again)

Just One More Example (If There's Time)

\square Lunch
Dinner
H. Special
Regular

```
Total Cost =
SUMX(
    Sale,
    Sale[Qty] * RELATED( Dish[Cost] )
```

How SUMX Changes Row Context (Again)

```
Total Cost
SUMX(
    Sale,
    Sale[Qty] * RELATED( Dish[Cost] )
)
```


How SUMX Changes Row Context (Again)

How SUMX Changes Row Context (Again)

How SUMX Changes Row Context (Again)

How SUMX Changes Row Context (Again)

Evaluation Context for Per Row Formula (Row 1)

Row Context:			Filter Context:
Sale[Shift]	= "Dinner"		Sale[Shift]
Sale[Qty]	= 1		
Sale[Price]	= \$12		Dinner
Sale[Dish]	= "Salad"		
Dish[ID]	= "Salad"	(R)	[Dish[Type]
Dish[Type]	= "Regular"	(R)	
Dish[Cost]	= \$6	(R)	Regular

Evaluation Context for Per Row Formula (Row 2)

Row Context:		
		Filter Context:
Sale[Shift]	$=$ "Dinner"	
Sale[Qty]	$=2$	Sale[Shift]
Sale[Price]	$=\$ 10$	
Sale[Dish]	$=$ "Pasta"	
Dish[ID]	$=$ "Pasta"	(R)
Dish[Type]	$=$ "Regular"	(R)

Anything Else?

Is there anything else to know about Evaluation Context?

Sure! But not in this presentation, we've already covered plenty.

That's it for the basics. One last "Take Away" slide...

Take Aways: Evaluation Context

Every Sub-Formula runs with at least one Evaluation Context in place. These are pairs of lists that holds useful information for the sub-formula.

CALCULATE makes changes to the Filter Context; this affects things like table references, which need to know which filters to apply.

Iterators create multiple Evaluation Contexts, each with the values of one row added to the Row Context. This is where the Per Row Formula goes to look each row's values to use like basic number/text/etc.

Evaluation Context

All Done!

And that's it. Thanks for joining me!

You Just Finished Watching:

DAX Physics 101: Demystifying DAX Evaluation Context

Any Questions?

To learn more please visit: briangrantbi.blog (Start from the beginning, posts are sequential)

(S. skypoint

Coming Attractions!

(If we somehow have time for them)

Context Transition

CALCULATE in disguise

Context Transition

Per Row Formula
New Filters Formula
CALCULATE (...)
COUNTROWS(Sale)

Evaluation Context for Per Row Formula (Row 1)

Evaluation Context for Per Row Formula (Row 2)

Row Context:
Sale[Shift] = "Lunch"
Sale[Qty]
Sale[Price] $=3$
Sale[Price] $=\$ 8$
Sale[Dish] $=$ "Burger
Dish[ID]
Dish[ID] ="Burger"
="H. Special" (R)
$\begin{array}{ll}\text { Dish[Type] } & =\text { H. Special" } \\ \text { (R) } \\ \text { Dish[Cost] } & =\$ 5\end{array}$
(R)

Evaluation Context for New Filters Formula (Row 2)

Measures

CALCULATE in disguise

Decomposing a Summary Query

The Hidden Contexts of DAX

4 Lists

Relationship Context:

List of Active Relationships (used in
"Super Lookup"/"Table Expansion")

Evaluation Context

Row Context:			Filter Context:
Sale[Shift] = "Lunch" [------7]			
Sale[Price] = \$8 Lunch			
Sale[Dish]	= "Burger"		
Dish[ID]	= "Burger"	(R)	[Dish[Type]
Dish[Type]	= "H. Special"		H. Special
Dish[Cost]	= \$5	(R)	Hz-Special

- Sale[Dish] to Dish[ID] (1-M, B.D.)

Rephrasing Context:
(1) SELECTEDMEASURE() + 2
(2) SELECTEDMEASURE() * 10

Rephrasing Context:

How should the New Filters Formula be rewritten (rephrased) before running. Populated by Calculation Items.

[^0]: [Sale[Shift] Sale[Qty] Sale[Price] Sale[Dish] Dish[ID] Dish[Type] Dish[Cost] Llunch
 \qquad \$8 Burger Burge H. Special
 H. Special

[^1]: Sale[Shift] Sale[Qty] Sale[Price] Sale[Dish] Dish[ID] Dish[Type] Dish[Cost]
 Lunch $\$ 8$ Burger urger \qquad
 \qquad
 \qquad

